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Abstract. Explicit expressions for the characters of irreducible representations of S0(7), 
G2 and SU(3) are used to derive the branching rule appropriate to the restriction from 
SO(7) to GI. The final result is expressed in three ways: (i) by means of a generating 
formula; (ii) in terms of a branching multiplicity diagram consisting in general of a set of 
nested heptagons; and (iii) through an explicit and simple formula for the multiplicity with 
which any irreducible representation of Gz appears as a constituent of any irreducible 
representation of SO(7). A remarkable and unexpected connection with the weight 
multiplicity diagrams of SU(3) is pointed out. 

1. Introduction 

Since the discovery by Racah (1949) of the relevance of the group G2 to the problem 
of labelling states of the atomic f-shell the properties of the representations of G2 have 
received a great deal of attention. A very useful form of the branching rule for the 
restriction from SO(7) to G2 has been given by Judd (1963), and a number of 
simplifications appropriate to quite wide classes of special cases have been pointed out 
by Wybourne (1972) along with a conjecture applicable to the most general case. 

It is the purpose of this paper to use explicit forms for the characters of irreducible 
representations of S0(7), G2 and SU(3) to derive what is in some sense the best 
possible form of the branching rule, and to show its connection with the weight 
diagrams of SU(3). 

2. Characters of S0(7), GZ and SU(3) 

The irreducible representations of the groups S0(7), G2 and SU(3) may be denoted by 
[AI  A 2  A3], fpl p23 and {vl v2) respectively, where Ai for i = 1 , 2 , 3  are either all 
integers or all half-odd integers satisfying A 1 2 A 2  a A 3  3 0, pi for i = 1 , 2  are integers 
satisfying p1 a p2 2 0, and vi for i = 1 , 2  are integers satisfying vl  L v 2  3 0. 

In terms of real class parameters &, Bi and ( j l i  the characters of these represen- 
tations may be written in the forms: 

(2.1) 

x i  = exp x2 = exp $2, x 3  = exp i43. (2.2) 

where 

1 
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where 

1 
x3  = exp i (-2 el -1 4 e2). 1 1 e2), 

x2 = exp 
1 

x1 = exp i 2 ~ 3  el, 

(2.4) 

( 2 . 5 )  

where 

In these formulae r denotes the permutation of S3 mapping (1 2 3) to (rl r 2  r3), and 
(-l)T its parity. The formulae (2.1) and (2.5) are well known and have been derived 
for example by Judd (1963). The formula (2.3) may be derived in the same way. The 
important point to note is that in carrying out the derivation of both (2 .3)  and ( 2 . 5 )  it is 
useful to parametrise the associated root spaces of GZ and SU(3) using the parameters 
(2.2) of the root space of SO(7) subject to the constraint: 

G2 and SU(3): x1 x2 n3 = 1. (2.7) 

This corresponds to the use of the triangular coordinate systems for the root spaces of 
both GZ and SU(3). The particular parametrisations (2.4) and (2.6) correspond to the 
usual Cartesian coordinate systems for these root spaces introduced by Behrends et a1 
(1962). However having pointed out this correspondence it should be stressed that the 
use of (2.2) in the interpretation of all three character formulae (2.1), (2.3) and (2.5) has 
a number of advantages. Firstly it makes manifest the Weyl symmetry group. In the 
case of SO(7) this group is the group of permutations and arbitrarily chosen sign 
changes of q51, 42 and 43; in the case of GZ it is the group of permutations and 
simultaneous sign changes of 41,&, and 43, whilst in the case of SU(3) it is simply the 
group of permutations of 41,42, and 43. Secondly the embeddings of GZ in SO(7) and 
of SU(3) in GZ are defined precisely by the use of the same parameters x l ,  x2 and x 3  in all 
three character formulae. In order to derive the corresponding branching rules it is 
therefore only necessary to write the characters (2.1) and (2.3) as linear combina- 
tions of the characters (2.3) and ( 2 . 5 )  respectively, making use of the 
constraint (2 .7) .  In deriving branching rules in this direct way it is possible that 
inadmissible characters may arise which may be eliminated by the use of the 
modification rules: 

These follow directly from (2.3) and ( 2 . 5 )  together with (2 .7) .  
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3. Weight diagrams of SU(3) 

Digressing temporarily, the weight diagrams of irreducible representations of SU(3) 
may be constructed by expanding the characters (2.5) in the form: 

K)"' n2 " 2 )  n3) exp i ( n l h +  n242 + n3d3), (3.1) SU(3): x'"' "2) = 
n1,nz,n3 

where the coefficient K)l;;;L3) is the multiplicity of the weight (nl n2 n 3 )  in the 
representation {vi v2). The weight diagram is the point set in which each point specified 
by the triangular coordinates (nl nz n3) is assigned the multiplicity K)!;:;]na). Since (2.5) 
defines a Schur function (Littlewood 1940) it follows that this multiplicity is just the 
number of standard Young tableaux with row lengths (VI v2)containing n l  ones, n2 twos 
and n3 threes arranged to be non-decreasing across rows and strictly increasing down 
columns. The enumeration of such tableaux leads to the generating formula: 

SU(3): x { ~ 1 ~ 2 } =  1 
u1-v2  a1+u3 

a3=0 a1=0 a 2 = 0  

+ (v i - v2+a i -a3 )43]  (3.2) 

(3.3) 

and hence to the explicit formula 
K/"I "2) 

n2 n3) = 1 +min(vl- v2, v ~ ,  v1 - n ~ ,  v t  - n2, V I  - n3, n l ,  n2, n3) 

where 
minimum of ~ 1 ,  ~ 2 , .  . . 
-1 

if K~ 3 0  for all i 
if K~ < 0 for any i .  

min(rcl, K 2 ,  . . . = { (3.4) 

This generalises the result of Wigner (1937) in a manner which makes explicit the 
symmetry of the multiplicity with respect to permutations of (nl n2 n3) .  

The corresponding weight diagram has the well known structure of a set of nested 
hexagons with the multiplicity increasing in steps of 1 from the value 1 on the boundary 
hexagon until the value 1 +min(vl - v2, v2) is reached at which state the 'hexagon' is in 
fact either a triangle or a single point. The multiplicity at each point within or on the 
triangle takes on this same maximum value. The arguments of min( . . . )in (3.3) are just 
the lengths v1 - v2 and v2 of alternate sides of the boundary hexagon and the distances 
of an arbitrary point specified by (nl n2 n3) from the six edges of this hexagon. 

This structure is exemplified in the case of the representation {v] v2} = (6 4) by the 
weight diagram of figure 1.  

' 1 - 1 - 1 - 1 1 '  IL 

In3  

Figure 1. SU(3) weight diagram for the irreducible representation { V I  vz} = {6 4). The 
numbers displayed are the multiplicities K/::,)* np). 



4 R CKing and A H A  Qubanchi 

4. Branching rule for SO(7)SGz 

Returning to the properties of G2 the branching multiplicity diagram appropriate to the 
restriction from SO(7) to G2 may be constructed, as pointed out already, by expanding 
the characters (2.1) in the form: 

The branching multiplicity diagram is the point set in which each point specified by 
oblique coordinates (F ~ 2 )  is assigned the branching multiplicity 13k>l 22$31. 

Manipulating (2.1) and using the constraint (2.7) yields the result due to Judd 
(1963): 

where Ai and pi for i = 1 ,2 ,3  are either all integers or all half-odd integers. This formula 
may conveniently be re-written as: 

where each term gives rise, as a point set, to a set of nested hexagons in which the 
multiplicities increase in steps of 1 from the value 1 on the boundary hexagon until the 
value 1 +min(A1 -A2,  A 2 - A 3 ,  2A3) is reached, at which stage the 'hexagon' is either a 
parallelogram or a line or a single point. The multiplicity at each point within or on the 
parallelogram is this same maximum value. This structure is well illustrated by the 
example [ A l  A 2  A3]  = [114 21 as shown in figure 2. 

Figare 2. SO(7UG2 branching multiplicity diagram for the irreducible representation 
[A1  A z A ~ ]  = [I 1 4 21 illustrating the two sets of nested hexagons, including inadmissible 
terms for which < w 2 .  
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Making use of (2.8) to eliminate inadmissible characters for which kl  < p2 cor- 
responds to reflecting in the line k ~ =  p2 - 1 and subtracting the contribution to the 
multiplicity. This leads, for the above example, to the result exhibited in figure 3. 

I p,= p2  -1 

1-1 -1 
I \ 

12 %' 

\ 
1 ' 2  2 1 

, ' 2 3 3 2 1  / 1 ' 2  3 2 1 

: I I /1 / 
/ f  

3 3 3 2 1  , ,  
I ,  

, /  , I  i 2 2  2 2 2 i a  A - 2  
.. . .  . . .  . ....................... \ .l-1-1-1-1. y2-  .... .. 3:.. I '  , ;:.. r .. 

iO.OI(- A,-,+ g 2 A 3 = 4 -  Pl 

Figure 3. SO(7UG2 branching multiplicity diagram for the irreducible representation 
[Al h2 As] = [ 11 4 21 after the application of the modification rules corresponding to 
reflection in the line pl  = 112-  1. The numbers displayed are the branching multiplicities 

I 1  1 4 21 
B € U I  1.21. 

This branching multiplicity diagram for [ 11 4 21 coincides precisely with the weight 
multiplicity diagram obtained previously for (6 4). This happy coincidence is not an 
accident peculiar to the example chosen. Further examples suggest the validity of the 
formula: 

This implies that the branching multiplicity diagram of [ A l  A 2  A31 on restriction from 
SO(7) to G2 coincides with the SU(3) weight multiplicity diagram for (A2 + A 3  2A3). 

This result may be proved using (4.3) and an induction argument with respect to the 
parameter A I  starting the induction from the initial value A 1  = A2.  This particular value 
corresponds to a special case analysed by Wybourne (1972) for which (4.3) yields, after 
reflection in the line p1 = k 2  - 1, a point set bounded by a parallelogram all of whose 
points have multiplicity 1. This same result is obtained, after reflection, from (4.4). 

The necessity of using the modification rule (2.8) along with (4.4) is unavoidable. 
However for fixed al  and a3 the application of (2.8) to (4.4) gives: 

2.4, A2-A3 Al-A2 

(4.5) x [ A l  A 2  A31 1 1 x f A l - A 3 + u , - ~ 2 . ~ ~ - A 3 + a ~ - u ~ 3  

al=0 u3=O a2=0 

which is remarkable for its similarity to each of the terms of (4.3). Once again the 
corresponding point set consists of a set of nested hexagons to which, in general, it is 
necessary to apply a reflection in order to obtain the final branching rule diagram. To 
avoid doing this it only remains to note that both (4.4) and (4.5) are, by virtue of (2.8), 
equivalent to: 

2A3 A 2 - A 3  min(A1-A U +U,) 

(4.6) €A,-.43+u,-u2,A2-A3+u2-a3~ c"' x 
u z = o  

~ [ ~ 1 ~ 2 ~ 3 j =  c c  
u1=0 u 3 = O  

This is all that can be said on the subject since all the G2 characters given by the use of 
this formula are admissible. Application to [ A I  A ~ A J ]  with A 1 - A 2 5 A 2 + A 3  yields the 
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same set of nested hexagons as (4.4) since h l - A 2 3 a l + a 3  whilst application to 
[ A I  A 2  A31 with AI = A 2  yields the same set of nested parallelograms as (4.5) since 
A - A Z  d a1 + a3.  This is exemplified by the branching multiplicity diagram for [4 4 21 
as shown in figure 4. 

.’ ..’’ I *’ 7 -l-l.--‘ ‘-1 /” 
1 1 ’ /) A 2 - A 3 = 2  ,,,? /l 

.......... -,-1-1-1 . .L.. .. + 
(‘‘O’ +2A\,:L I P1 

.‘I 

, 

Figore 4. S0(7fiG2 branching multiplicity diagram for the irreducible representation 
[ A l  A2 A 3 ]  = [4 4 21 illustrating a set of nested parallelograms. The numbers displayed are 
the branching multiplicities B{*,::]23. 

More generally the point set defined by (4.6) is a set of nested heptagons for which 
the branching multiplicity increases in steps of 1 from the value 1 on the boundary 
heptagon until the value l+min(A1-Az, h 2 - h 3 ,  2A3) is reached at which stage the 
‘heptagon’ is in fact either a quadrilateral, a triangle, a line or a single point. All points 
within and on this ‘heptagon’ have the same multiplicity. This structure is illustrated by 
the example [7 4 21 of figure 5 .  

Figure 5. S0(71Gz  branching multiplicty diagram for the irreducible representation 
[ A l  A2 A3] = [7 4 21 illustrating a set of nested heptagons. The numbers displayed are the 
branching multiplicities B ~ L ~ : ~ ~ .  

The explicit branching multiplicity formula which is the analogue of (3.3) is, in the 
notation of (4.1) and (3.4): 

B!kki3’  = 1 +min(A1- Az ,  A 2 - A 3 ,  2A3, ~ 2 ’  A l  -A3-p2, A 2 + A 3 -  p2,  pl- pz, pl +pz 

(4.7) 
- A 1 + A s 7  + 1 - A 1 + A 2 ,  p l - A 2 + A 3 ,  A i + A 2 - ~ ~ 1 - p 2 ,  A i + A 3 - p i ) .  

The last nine arguments of min( . . .  ) are the distances of the point ( p l  p 2 )  from each of 
the possible edges of the boundary of the branching multiplicity diagram. 
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5. Conclusion 

The final result (4 .6 )  is the best possible in the sense that it not only involves no further 
use of the modification rule (2 .8)  but also yields the explicit formula (4 .7) .  It is 
remarkable both for the ease with which it reproduces (and corrects where appropriate) 
all the branching rules given by Wybourne (1972) for a variety of classes of special cases 
and for the prediction that for A - A 2  * A 2  + A 3  the branching multiplicity diagram for 
[ A l  A 2  A 3 ]  is precisely the weight multiplicity diagram for {h2+h3 2A3}. 

Finally it should be pointed out that the validity of (4 .6)  proves the completeness, 
conjectured by Wybourne (1972), of a particular set of elementary multiplets ap- 
propriate to the restriction from SO(7) to G2. Wybourne's conjecture corresponds to 
the branching formula: 

x [ A \ 1 A 2 A 3 1 =  X€b+c+d+e+f+g,e+f+gf 

arb, . . . . f 
with A l - A z = c + f f g ,  A 2 - A 3 = d + e + g ,  2 A 3 = a + b + f ,  df=O. The terms in this 
expression are in one-to-one correspondence with those of (4 .6)  as established by 
the relations a = 2A3-a1, c = A 1  - A 2 - a ~ ,  e = A 2 - A 3 - a 3 ,  together with either b = a l ,  
d = ( Y 3 - ( Y 2 ,  f = O ,  g = a 2  or b = a l ,  d = 0 ,  f = O ,  g = a 2  or b = a 1 - a 2 + c u 3 9  d = 0 ,  
f =a2-a3, g = a 3  according as either O s p 2 < A 2 - A 3  or p2=h2-h3  or A Z - A 3 < p 2 .  
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